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Abstract |

We consider a two-machine scheduling problem in which each job consists of a single operation
per machine, and the operations of a job can be performed in parallel. The completion time of a
job is the maximum of the completion times of its operations. The objective is to minimize the
total flow time of the jobs. In this article,we provide an alternative NP-hardness proof for the

problem.
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1. Introduction |

We consider a scheduling environment in which each job consists of two components.

There are two independent machines, each of which produces its own type of components.

A jobis completed when the processing of both of its components is finished. This type

of scheduling problem is encountered frequently in manufacturing, where finished
components are required to be bundled together for final assembly or delivery. For
example, in the production of paper products, a given type of product is produced on
a specific machine. Orders from different customers usually specify certain quantities
of various types of paper products, but an entire order must be shipped to the customer
in a single shipment (see Leung et al. 2004). See also Lee et al. (1993), Sung and Yoon
(1998), and Cai and Zhou (2004) for other applications.
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Our model is mathematically defined as follows. There are two machines M; and

My, and a given set of n jobs {Ji, Jo,..., J,}, where each job J; has a pair of tasks,

namely an a-task and a b-task. The a-task of J; will be processed by M; and requires
an uninterrupted processing time of a; > 0, while the b-task of J; will be processed by
M, and requires an uninterrupted processing time of b; >0 (j = 1, 2,...,n). The
completion time of a job is the larger of the completion times of its two tasks. All jobs
are available for processing at time 0. The objective is to schedule the a-tasks and
b-tasks of the jobs on the machines so as to minimize the total flow time (i.e., the sum
of completion times of the jobs). We denote this problem as P.

The complexity of P has been considered by Wagneur and Sriskandarajah (1993),
who presented a strongly NP - hardness proof of the problem. However, Leung et al.
(2005) have shown that Wagneur and Sriskandarajah’s proof is incorrect. Ahmadi et
al. (2005) and Yang (2005) have proven independently that the two-machine bundling
operations problem with an objective of minimizing total job completion time is NP-
hard in the strong sense.

A number of researchers have analyzed the computational complexity of other
variants of the problem. For example, Sung and Yoon (1998) have shown that the
more general problem of minimizing the total weighted completion time is NP-hard in

the strong sense. Leung et al. (2004) have shown that the extended problem with three
or more machines is also strongly NP - hard. However, as mentioned in Leung et al.
(2005), the complexity of P remains open. In this paper, we provide an alternative

NP-hardness proof.

2. NP-Hardness |

We first provide some important properties of the optimal solution of the problem.

Lemma 1 There exists an optimal solution for P in which (i) there is no idle time on

either machine, and (ii) the job sequences on both machines are identical.

Proof: The proof of property (i) is straightforward and is omitted. See Sung and Yoon
(1998) for a proof of property (ii).

Faculty of Engineering 98 Kasetsart University




Complexity of Two-Machine Scheduling with
Bundling Operations and Total Flow-Time Minimization

It suffices to restrict our search to solutions that satisfy the properties stated in
Lemma 1. In the remainder of our analysis we will only consider schedules that satisfy
these properties.

We will show that P is NP - hard by transforming the Even-Odd Partition
problem, a known NP-hard problem (Garey et al. 1988), into P. The Even- Odd
Partition problem can be described as follows. Givenaset A = {1,2,...,2m} and a size
zj € Z7 for each j € A, where 1 < x9 < -+ < xay,, does there exist a partition of
A into subsets A and As such that ZkeAl T = Zk€A2 71, and that each of Ay, Ao

contains exactly one of 2j — 1,25 for j = 1,2, ..., m? Here, a partition {A;, Ay} is
said to be even-odd if each of Ay, Ay contains exactly one of 25 — 1,25 for j =1,2,...,
m. In other words, the Even-Odd Partition problem is to determine an even-odd

partition {Ay, As} of A that satisfies the condition D, 4 Tk = > e 4, Tk-

Given an instance of the Even-Odd Partition problem, we define the following
“large quantities”:

K =350 (w5 — w95 1);
L= 35000 o + B(am — z1);

R=m2"+ 1)+ (m+1)K.
,m, we define the following:

Yoj—1 = Toj1 + [(m+ 1R+ 3|2 'L+ 2771 L;

yaj = 25 + [(m+ 1)R+3]2™ 'L 4+ 2771 L.

In other words, we transform the quantities x9;_1 and xo; into yo;_1 and ya;, respectively,

by adding a large constant to each of them, and such a constant is dependent on j.

Clearly, y1 < y2 < --- < yam,. In addition, EkeAl Tk = Zk‘eAz Tk if and only if

2m

D ke, Yk =D pea, Yo = B for any even-odd partition {Ay, Ao}, where B = 23 e

Then, we construct the following instance of the scheduling problem:
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n=2m+1;
agj 1= (2" =2 HRL+ (m+1)(y2; — ;1) (G=1,2,...,m);
agj = (2™ 1 -2 HRL  (j=1,2,...,m);

b = Yk (k=1,2,...,2m);

a2m+1 = B+ m(yam — y1);

bomi1 = [(m —2)2" "1 + 1] RL + (m + 1)K + m(y2m — y1)-

In this constructed instance there are 2m “regular” jobs Ji, Jo, ..., Jon, and a “critical”
job Jama1. As will be shown later, this instance is constructed in such a way that in
the optimal solution the critical job must be scheduled in the (m+ 1)st position,
separating the regular jobs into two groups with an equal number of jobs. Obviously,

this construction can be done in polynomial time. Define a threshold value

m
T = (m+1)(B+bami1) + > _(m —j + 1) (y2j—1 + y2;)- (1)
7j=1

We will show that there exists an even-odd partition { A1, A2} of A such that 7, 4 vk
= D _keA, Uk if and only if there is a feasible solution to the constructed instance with an
objective function value no greater than 7. Let C[’k} and C[,’;} denote the completion
times of the job in the kth position of the job sequence on M; and Ms, respectively.

Given a solution to the Even - Odd Partition problem instance, we construct a
schedule & of our problem as follows. First, assign Jo,,41 to the (m + 1)st position of
the job sequence. Then, for j = 1,2,...,m, if 2j —1 € Ay, assign Jy;_1 to the jth
position and Jo; to the (j +m 4+ 1)st position of the job sequence, otherwise assign Jo;
to the jth position and Jyj_1 to the (j + m 4+ 1)st position of the job sequence.

The following lemma implies that & is the desired schedule.

Lemma 2 The total flow time of jobs in schedule & is equal to T.

Proof: Note that because » ;. 4, Yk = Y _xc 4, Yk, We have

Z Y25 + Z Y2j-1 = Z Y21+ Z Y25

Jj=1,2,....,m Jj=1,2,....m Jj=1,2,....m Jj=12,....m
s.t. 2j€Ag s.t.2j—1€Ag s.t.2j—1€ Ay s.t.2j€A]
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implying that

Z (Y25 — y2j-1) = Z (Y25 — y25-1),

§=1,2,....m §=1,2,....m
s.t.25—1€Aq s.t.2j—1€ A9

which in turn implies that

1 — n
z (y2j Y25 1 = iz Y25 — Y25 1 iz T2j — T2j— 1 :K (2)

§=1,2,....m
s.t.2j—-1€ Ay

The completion time of the critical job on M is

Clnty) = Z azj—1 + z azj + a2m+1

§=1,2,....m §=1,2,...,m
s.t.25—1€ Ay s.t.25€A

m

Z(mel = 2" H)RL + (m+1) Z (Y25 — Y2j-1) + azm+1

j=1 j=1,2,....,m
s.t.2j—-1€Aq

=[(m—2)2""" +1]RL+ (m + 1)K + aspmy1 (by (2))
=B+ b2m+17
while the completion time of the same job on Ms is
Clgn) = O bk +bamer = > Y+ bami1 = B+ bamp1.
keAy ke A

In other words, C3, = Cy, . =B + bayny1 (see Figure 1). Note also that a; < b;

for j = 1,2,...,2m. Hence, the sum of the job completion times of the schedule is

ZQ"L—H [/llc] For j = 1,2,...,m

Z bap—1 + Z bas

£=1,2,. £=1,2,.
s.t. 20— 16A1 s.t. 20— 16A2

Gmt1) = B+ bamia + Z bae + Z bae—1,

£=1,2,. £=1,2,.
s.t. 20— 16A1 s.t. 20— 16A2
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which implies that

J J
0+ Cligmar] = B+ bamyr + Z(b%—l + ba¢) = B+ bapy1 + Z(y%—l + y2r).
—1 =1
Therefore,
2m+1 m J
> Cly=(m+1D)(B+bomi1) + Y (yar1+y2u) =T.
k=1 =1 =1

Conversely, suppose that there exists a schedule for the constructed instance of our
problem with an objective function value of no more than 7. Let & be an optimal
6. Hence, Z(6) < T. Let by, denote the schedule of the constructed instance. Let
Z(6) denote the total flow time of schedule processing time of the b-task in the kth

position of the job sequence in schedule 6. We have the following lemma.

Lemma 3 In schedule 6, the critical job Jom41 must be scheduled in the (m + 1)st
position.

Proof: Consider any schedule o of the constructed instance with r jobs preceding

Jom+1, where 7 # m. Case 1: r > m + 1. Note that 2271 RL — (m + 1)(y2; — y2j-1)

>0 for j = 1,2,...,m. Thus, ap < 2" 'RL, for k =1, 2, ..., 2m, which implies that

Cl

) < r2m~LRL. Hence, in this case, schedule ¢ must satisfy the following:

Clrs1) = O + @2mi1

< 12" 'RL 4+ B + m(yam — y1)

2m m
=r2™1RL +% > ap+m[(mA1)R+3]2" L4+ " 27 L+ m(zgm —21) + (27— 1)L
k=1 j=1

<r2™ 'RL+2L+m[(m+1)R+3]2" 'L+ (2™ - 1)L+ (2™ ' - 1)L
=r2" 'RL + (m + 1)(mR + 3)2™ 'L
< 2™ 'RL +r(mR +3)2™ 'L
=r[(m+1)R+3]2" 'L
1!
< Cpy-
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Define Ay = C[’T’,} — /r+1] > 0. Let J, denote the job immediately preceding Joy,+1.
Interchanging J, and Jo,,,+1 in the schedule will increase the completion time of J, by
boy, +1 and will decrease the completion time of Jo,, +1 by min {by, bopmi1+ A1 + ay}-
Note that b, > bg,1. Thus, interchanging J, and J2m+1 can improve the total

completion time of the schedule, which implies that the current schedule is not optimal.

Case 2: r < m — 1. In this case, schedule o must satisfy the following:

1

C[,T""H > Aom41= B +m(y2m_ yl) > MYam = (T+1)me > z b[k] + b[7'+2] = C[r_;,_z] - b2m+1-
k=1

Define Ay = () C[’,r 411 < bam+1 - Let J, denote the job immediately following Jo,1.

1/
[r+2]

Interchanging Joy,41 and J, in the schedule will decrease the completion time of
Jy by at least bg,,+1 and will increase the completion time of Jo,+1 by at most
max{Ag, a,}. Note that a, < bay,+1. Thus, interchanging Ja,,4+1 anc J, can improve the

total completion time of the schedule, which implies that the current schedule is not
optimal. Combining Cases 1 and 2, we conclude that in schedule &, job Jom, 11 must

be scheduled in the (m + 1)st position.

Lemma 3 implies that in schedule &, there are m jobs processed before the critical
job and there are m jobs processed after it. Based on this result, we have the following

lemma.

Lemma 4 In schedule &, exactly one of Joj_1, Jo; must be processed before Jop, 11 for
7=1,2,...,m.

Proof: Suppose, on the contrary, that schedule & does not satisfy this property. Let

r = max {j ‘ either both Jy;_1, Jo; are processed before Jo,, 11

or both Jy;_1, Ja; are processed after J2m+1}.

Case 1: Both Jo,_1, Jo, precede Jap,41. In this case, for j=r+1, r+ 2,..., m,
exactly one of Jpj_1, Jo; is processed before Jo,,41. These jobs contribute at least
(m—r)[(m+1) R+3]2™ 1L+ Dot 127V L= (m—r) [(m+1) R+3] 2™~ L+
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(2m—2") L to the completion time of Jo,, 11 on My. The two jobs Ja,._1, Jo, contribute

at least 2 [ (m+1)R+ 3] 2m=1 [, + 2" to the completion time of Jo,, +1 on My.
In addition, there are » — 2 other jobs processed before Jo,,+1. These jobs contribute at
least (r — 2)[(m + 1)R + 3]2™ "L to the completion time of Jo;,41 on Ma. Hence,

Clrogy) = (m=7r)[(m+ DR +3]2" 'L+ (2™ - 2")L
+2[(m+ 1R+ 32" L+ 2"L+ (r —2)[(m+ 1)R+ 3]2" 'L + bap11
=m[(m+ 1)R+3]2" 'L+ 2™L + byt

1 m
>3 ka +m[(m+1)R+ 32" L + (2™ — 1)L + bamia
k=1

=B+ b2m+1. (3)

Now, consider the total flow time of schedule 6. The completion time of the critical

job is at least C[ Forj =1, 2, ..., m, the completion time of the jth job is at least

+1]°
Zk:l bir) and the completion time of the (j+m+1) st job is at least C[” )t

S0 1 bk rmy1). Thus,

mj

j=1 k=1 j=1 k=1

= (m+1)Cj,q + > (m—j 4+ 1)(by) + bjrmn)

> (m+ 1)C[I;n+1] + Z(m —J+ D) (y25-1 +y25) (since y1 < y2<---< yom)

7j=1
m
> (m+1)(B + bamy1) +Z m— j+ 1) (Y21 + yoj) (by (3))
7j=1
=T,
which is a contradiction.
Case 2: Jap41 precedes both Jo,—1, Jo,. In this case, for j =r 4+ 1,7+ 2, ..., m,

exactly one of Joj_1, Jaj is processed before Jo,,41. These jobs contribute at least
S (27 =27 RL to the completion time of Joy, 1 0on My. In addition, r jobs from

the subset {Ji, Jo,..., Ja,_2} are processed before Jo;, 1. These jobs contribute at

least 72M YR —2 Z;: 2/~ RL to the completion time of Jom+1 on M;.This is because
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each ay (k=1,2,...,2r) is at least A\ — iz, where A = 2™ 'RL and pgj_1 = pg; = 2771

RL (j = 1,2,...,7—1). Therefore, the sum of the processing times of the a-tasks of
any r jobs among Jq, Ja, ..., Jo,_o is at least rA— 212::1 g = TA —Z§:1(M2j—1 + pi25)

Hence,

" r—1
Cloy = >, @' =2 HRL+ [mmlRL = 2]'134 + aomt1
j=r+1 j=1

=[(m—7r—2)2""' +2"|RL+ (r2™' — 2" + 2)RL + agm+1

= [(m — 2)27"_1 + 2] RL + B+ m(yam — y1). (4)
Now, consider the total flow time of schedule &. The completion time of the critical
job is at least C’[’m+1]. For j =1,2,...,m, thecompletion time of the jth job is at least

Zizl bjx) and the completion time of the (j +m + 1) st job is at least C’;nﬂ + Zk_

1 b[k‘—‘r’ﬂl-‘rl} . Thus,

m j J
Z(6) 2 C[,m—&-l} + Z Z b + Z |: [m—+1] Z b[k-‘rm—‘rl}:|
=1k k=1

=1

= C[,m—‘rl} +mCY, [m+1] + Z m J+ 1 [ ] + b[j—‘rm—‘rl})

m
> Clpiy) +mCh o+ > (m =G+ 1)(y2j-1 + 1) (since y1 <y < -+ < yam)

j=1
m

m
= Cfmm + m[zb[kz} + b2m+1:| + > (m—j+1)(y2j-1 + y25)
k=1 j=1

> Clyyyy +m [(m+ 1R+ 32" L+ mbayi + Z(m =7+ D(y2i—1 + v25)
=1

> [(m — 2)27”_1 + 2] RL + B+ m(yam — 1)

+m?[(m+ DR+ 3|2 L+ mbay 1+ Y (m — j+ 1) (y2j1+ y25) (by (4))
j=1

=T+ RL+ [(m—2)2""'+1|RL —mB

+ m(Yom—y1) + M [(m+1)R+ 3|2 L — by (by (1))

Faculty of Engineering 105 Kasetsart University




=T+ RL—mB+m?[(m+1)R+3]2""'L — (m+ 1)K (by definition of bp,+1)

=T —f—RL—{ Zyk —m?*[(m+ 1)R+ 3]2™~ 'L+ (m+ 1)K} (by definition of B)
=T+RL—[ Zxk+m )L+(m+1)K}
> T,

which is a contradiction. Therefore, for j = 1,2,...,m, exactly one of Jy;_1, Jo; must

be processed before Jop,11.

Next, we define Ay = {k | Jj is processed before Jo,41 in 6} and Ay = A\ A;.
Thus, by Lemma 4,{A;, A2}is an even-odd partition of A. The next lemma implies

that {A;, A2} is the desired even-odd partition.

Lemma 5 ZkeAl Yk = ZkeAg yr = B.

Proof: Since Z(6) < T, we have

maX{C[lerl]’ [/;n+1]} + mC[/;nJrl] + Z(m =7+ Dby + b pma)) < T

j=1
This implies that
(m+1) O[m+1] Z —j+ (Y251 +y25) < T (5)
and .
Clo 1) +mCl )+ Y (m—j+1)(yaj 1 +yo5) < T (6)
j=1
Equation (5) implies that C’[” 1) < B+ by, which in turn implies that C’[’;n] < B, or
equivalently,
>y <B. (7)
keAq

On the other hand, equation (6) implies that C'[ ) +mC[ 1y S (m+1)(B+ban 1),
which in turn implies that

O[/m] + mC[/;n] S (m + 1)(B + b2m+1) — a2m+1 — mb2m+1.
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Substituting the expressions for B, agy11, and ba,,+1 into this inequality and

simplifying, we have

Clyn) + MmCp, Zyk + [(m—2)2" ' L 1]RL+ (m+ K. (8)

Note that A1 = {k | Ji is processed before Jo,,4+1 in 6} , which contains m elements

(by Lemma 3). Thus, inequality (8) becomes

d ap+m ) bk<—Zyk+ m—2)2" 7 +1]RL+ (m+1)K.  (9)
k€A k€A

Note also that

Zak_zzml 27H)RL + Z (m +1)(y2j — y2j—1)

keA, §j=1,2,....m
s.t.2j—1€Aq

= [(m=2)2""+1JRL+ Y7 (m+1)(y2; — yaj1)-
S

Substituting this into equation (9) and simplifying, we have

2m
m
Z (m+1)(y2; — y2j-1) +m Z b < EZWJF (m+ 1)K,

j=1,2,....m k€A, k—1
s.t.2j—1€Ay

or equivalently,

> (mAD(yg— 1) +m Yy <

j=1,2,...,m k€A
s.t. 2j71€A1

Hence,

5 > (ij—y2j71)+5ZykSEZyk+T ST (s — 21,

j=1,2,....m k€A, k€A, j=1,2,...,m
s.t.2j—1€ Ay s.t. 25— IEAQ

which implies that

mTH > (y2j—yzj1)+%< Y it Y, y2j>

j=1,2,....m j=1,2,....m j=1,2,....m
s.t.2j—1€Ay s.t.2j—1€Aq s.t.2j—1€Ag

S%( Z Y2j + Z y2j~1>+mT+1 Z (y2j — y2j-1)-

Jj=1,2,....m Jj=12,....m j=1,2,....m
s.t.2j—1€Ay s.t.2j—1€Ag s.t.2j—1€Aq
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Upon simplification, we have % Y ke, Uk < % > kA, Yk, OF equivalently,

Z yr < B. (10)
kEAQ

Combining (7) and (10), we have > ;4 Yk = D ke, Yk = B.

Summarizing the above analysis, we have the following result :Theorem 1 Problem P is NP-hard.

3. Conclusion |

We have proved that the two-machine scheduling problem with bundling operations

and total flow time objective is NP-hard using a reduction from Even-Odd partition.
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